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Abstract

The terms force of mortality, incidence density and hazard rate and involve
the same concepts. However usage tends to divide along professional lines.
Actuaries and epidemiologists tend to see the force of mortality and incidence
density respectively as empirical quantities, and deal with variations in these
over age or time by segregating them into age- or time-bands. Statisticians
usually first define the hazard rate theoretically – using continuous functions
and mathematical limits – and then develop estimators for it. The resulting
mathematical divide is particularly acute in the case of the “exponential”
formula allowing one to calculate the risk over a given age- or time-period
from the continuous function reflecting the variation in force of mortality, the
incidence density or the hazard rate over this period. Since the only formal
derivation until now involves advanced calculus, few epidemiology textbooks
present, and fewer still fully explain, this formula. Increased understanding
of this link, and its underpinnings, is especially important today, as the fa-
miliar Kaplan-Meier estimator of a cumulative incidence proportion or risk is
gradually being replaced by the Nelson-Aalen estimator. Likewise, investiga-
tors increasingly use both non-parametric and parametric statistical models
to calculate profile-specific x-year risks, risk differences, and numbers needed
to treat, and to test proportional hazards via log[survival] plots. In part I,
we first use a worked example to illustrate the concepts common to the force
of mortality, the hazard function, and incidence density functions. We then
revisit the 1832 definition of the force of mortality and how a person-year
was conceptualized, and use a striking 2010 graph to re-emphasize the cen-
trality of time. In part II, we extend the 1832 conceptualization, and use the
probability of a specific realization of a Poisson random variate to de-mystify
the formula linking an incidence function and risk.
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0 Introduction and outline

The terms mortality, hazard rate, incidence (rate), and incidence density

all involve the same concepts, but those that involve a mathematical limit

(derivative) or integral make many epidemiologists uncomfortable. Indeed,

although epidemiologists are comfortable with the concept of full-time equiv-

alents in measuring staff sizes, this comfort level does not always extend to

the concept of an intern-month or intern-year, or to converting an incidence

function to a cumulative incidence proportion or risk. As a result, epidemiol-

ogists may be unsure as to how to turn an injury rate of say 0.095 needle-stick

injuries per intern-month into a 12-month cumulative incidence or risk, and

of what assumptions are involved. Indeed, few textbooks present, and fewer

still explain, the formula linking incidence and risk.

Increased understanding of this link is all the more critical nowadays, as

the familiar Kaplan-Meier estimate of risk is gradually being being replaced

by the Nelson-Aalen one, and as investigators use non-parametric and para-

metric statistical models to calculate profile-specific x-year risks (Schröder

2009), risk differences, and numbers needed to treat (Ridker, 2008).

The second of this pair or articles addresses our main objective – de-

mysifying (and giving a simpler derivation of) the formula used to convert

an incidence function to a cumulative incidence (proportion-type) ‘rate.’ To

help with the heuristics, the first of the two parts provides an orientation to

incidence density and hazard functions themselves.
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We agree that while “the calculation of frequencies of disease is the most

basic tool for epidemiology,”, the “fundamental concept of the nature of

the incidence rate and its calculation in dynamic populations is often not

well explained, especially in introductory courses. We applaud the IJE for

beginning their Education Corner with an item that goes back to the basics.

Since one can never be too clear about these, section 1 reviews the concept

of a hazard or an incidence density in a single interval defined by a timepoint

t. We use data from a dynamic population experience to measure the force

of mortality (hazard function, incidence density) over the life course, and

comment on some 19th century attempts to fit it using smooth parametric

functions.

Since the role of time, and time-units, in the measurement of the inci-

dence function is often neglected, section 2 presents a striking time-graph to

illustrate how critical time units are, and how easily they are overlooked, or

even misunderstood.

Section 3 revisits the first definition of the force of mortality, a term

coined by TR Edmonds, an actuary colleague of William Farr. Whereas

most of us think of a person-year simply as the unit by which we measure an

aggregated amount of experience of different persons, this actuary’s concept

of a person-year was somewhat different. His concept leads to a simple

and constructive derivation of the link between incidence functions and the

cumulative incidence proportion or risk.
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1 Incidence rate; incidence density; hazard

rate; force of mortality

Epidemiology texts tend to define an incidence rate or incidence density

using ‘numbers of events’ and person-time denominators, in intervals of time.

Statistical texts define their equivalents, hazard rate or force of mortality, as

mathematical limits involving probability distribution functions and survival

functions measured in continuous time. The twain seldom meet.

The 2009 Wikipedia1 entry for the ‘instantaneous hazard rate’, presum-

ably prepared by a statistician, is a case in point. It defines it, in words first,

as “the limit of number of events per unit time divided by number at risk as

time interval decreases”, and then in symbols:

h(t) = lim
∆t→0

observed events in interval [t, t + ∆t) / N(t)

∆t
.

The entry did not define N(t), but presumably it was used to denote the

number at risk at time t, and allowed for the possibility that it might be

different at time t + ∆t, and at intermediate times. Let us set aside for

now the focus on the limit, and consider on a finite2 interval [t, t + ∆t). If

we replace N(t) by N, the average no. persons being observed during the

interval (t, t+∆t),3 and re-arrange the expression so that the denominator is

1The entry has since been edited.
2As we show below, if the ∆t is reasonably small, the value of the expression will not

change appreciably if it is made smaller still.
3Note that N×∆t is also the integral of the N(t) function over the interval in question.
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in the form of a ‘persons × time’ product, then we get, for this finite interval,

the ratio

no. events in (t, t + ∆t)

N × ∆t
=

no. events in (t, t + ∆t)

Population-Time in (t, t + ∆t)

which takes the form of incidence density, a term introduced to epidemiology

by Miettinen (1976):

Incidence density (“force of morbidity” or “force of mortality”)

– perhaps the most fundamental measure of the occurrence of

illness – is the number of new cases divided by the population-

time (person-years of observation) in which they occur.

In light of this, is the hazard rate or force of mortality the same as the

‘short-term incidence density’? A concrete example in which we calculate

the hazard rate or force of mortality at a given age t, based on the numbers

of deaths, and person-years of observation in the USA population over the

period 2000-2006, shows that it is,. Thus, there is no need to be frightened

by the mathematical limit, or by having to actually carry out the calculation

using a tiny interval, or by the prospect of being trapped in an ‘instant’ or

‘moment’– terms we will use for a time-interval of zero length. We never

consider the zero length interval that some people equate with the term

instantaneous: we simply measure the ratio as we approach that zero length

interval.

The ‘almost-raw’ data for our calculations, as well as the full ID function
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Figure 1: Age structure of, and age-specific numbers of deaths recorded in, the (dynamic) USA

population observed over the period January 1, 2000 to December 31, 2006 (A), along with the age-specific

death rates derived from them (B). Source: Human Mortality Database, http://www.mortality.org/.

For each (continuous) value of age (t), shown in (A) is N(t), the number of persons who were ‘exactly

t years of age’ on some date in the 7 calendar years. Thus the numbers of person-years lived in any

age-interval is the integral of (area under) the N(t) curve over the interval in question. Most residents

contributed 7 person-years each to the overall total of 2,000 million person-years; some contributed fewer

– mostly to either the younger or older end of the person-years distribution. The numbers of deaths for

any age-interval is the integral of the ‘deaths per 1-year-of-age time slice’ curve (axis on right) over the

interval in question. Shown in (B) are the full (in black, left axis) and ‘below age 60’ portion (grey, right

axis) of the ID(t), or force of mortality or hazard rate function. The ID(t) function ranges from a nadir

of 0.000014 year−1 at approx. t = 10, to 0.51 year−1 at age t = 105. The log – to the base 2, so that

we can easily measure doubling times – of the ID(t) function is shown on yet another scale. Gompertz’

Law of Mortality, in which the rate ‘doubling time’ is approximately constant (the logs of the rates are

approximately linear) appears to hold true for the age range 30-90. For historical interest, Edmonds

piecewise-linear log(ID) curve, based on data from early 1800s, is also shown on this scale.

6



From incidence function to cumulative-incidence-rate / risk. part I:
incidence density, force of mortality, and hazard functions Draft aug 04, 2012

derived from it, are shown in Figure 1. The population sizes and numbers

of deaths were only available for 1-year age bins; thus, in order to display

them as a continuous function of age, the numbers were smoothed out using a

spline function. The integral under the curve over any specific age-interval is

the numbers of person-years lived in, or the numbers of deaths recorded for,

the age-interval at issue. Over the age span 0-105, there were approximately

17 million deaths in just over 2,000 million person-years.4

We take as illustration the ID or force of mortality or hazard rate at the

(deliberately selected to be a non-integer) age t = 39.25. Technically, persons

are only exactly 39.25 for a moment (infinitesimal, since a moment has no

duration) and so we can only consider the calculation over say the finite

interval (t− ∆t
2
, t+ ∆t

2
), of width ∆t, that includes t = 39.25.5 Table 1 shows

the calculations with successively shorter intervals. The IDs would ultimately

become unstable if we considered intervals as short as 39.25y ± 3 hours, say

or 79.25y ± 1 hour. However, even as we narrow the intervals from a year

to a day – or to minutes and seconds and nanoseconds if we ignore sampling

variability and restrict our focus to the theoretical (i.e., abstract, expected)

values – the ID’s are practically unchanged. As Figure 1(A) shows, the ID(t)

function does not change abruptly; it changes continuously – but slowly.6

4Thus, the overall ID was 0.0085 year−1; its reciprocal – 118 years – reflects the fact
that this population experience is younger than in the current lifetable (expectation of life
at birth: 77 years) calculated from these data.

5Since it doesn’t fundamentally alter the concept, readers will find it easier, as we do
here, to take t to be the center, rather than the left boundary, of the interval. The use of
successively smaller intervals centered on a does cause some mathematical difficulties at
t = 0, and explains why the limit is typically approached from the right.

6over the 1-year interval centered on t = 39.25, the ID increases by about 0.021% per
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Table 1: Incidence density (ID), calculated for (successively smaller) inter-
vals, of width ∆t, centered on 3 different timepoints

t = age 39.25 t = age 59.25 t = age 79.25
∆t P-T* Deaths ID . P-T Deaths ID . P-T Deaths ID
1 year . 31.255 55,590 177.9 . 19.520 177,133 907.5 . 9.578 486,785 5,082.3
1 month . 2.605 4,629 177.7 . 1.626 14,772 908.6 . 0.798 40,567 5,082.5
1 week . 0.601 1,068 177.7 . 0.375 3,409 908.6 . 0.184 9,362 5,082.5
1 day . 0.086 152 177.7 . 0.053 486 908.6 . 0.026 1,334 5,082.5

*P-T Units: 1 million person-years ID Units: deaths / 100,000 years

Based on polulation-sizes and numbers of deaths, USA 2000-2006.
Source: Human Mortality Database, http://www.mortality.org/

Thus, the only reasons to be ‘instantaneous’ about it are if one wished to

have a continuous smooth curve, especially one with a functional form, to

shorten tedious annuity calculations or to compute an x-year risk (cumulative

incidence), or to be able to provide an accurate break-even premium for 1-day

term insurance for a large group of people.

We suspect that part of the ‘divide’ between statisticians and epidemiolo-

gists in this matter has to do with two different – but operationally equivalent

– ways they define the hazard and the incidence density. Statisticians tend

to first view it as a theoretical quantity and define it – in the abstract – as a

(conditional) ‘probability per unit time’ for those who have reached t

Prob[transition in next ∆t]

∆t

day or 8% in a year; for the 1-year interval centered on t = 59.25, the ID increases by
about 0.024% per day – so little that even the fastidious Edmonds (see below) should not
have been concerned – or just over 9% over the year. These almost-constant year-over-year
hazard ratios of 1.08 or 1.09 for much of the age-range are similar to those that Gompertz
observed in the material he studied, and bear out the log-linearity of mortality rates with
respect to age that he termed a Law of Mortality.
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Indeed, Clayton and Hills (1993, chapter 5 (Rates), p40) give it a yet-another

name:

As the bands get shorter, the conditional probability that a sub-

ject fails during anyone band gets smaller. When a band shrinks

towards a single moment of time, the conditional probability of

failure during the band shrinks towards zero, but the conditional

probability of failure per unit time converges to a quantity called

the probability rate. This quantity is sometimes called the instan-

taneous probability rate to emphasize the fact that it refers to

a moment in time. Other names are hazard rate and force of

mortality.

Epidemiologists tend to first view it as an empirical quantity and define it

using data. Indeed, Clayton and Hills estimate the rate parameter using the

familiar incidence density measure:

In general, then, as the bands shrink to zero, the most likely (i.e.,

Maximum Likelihood) value of the rate parameter is

Total number of failures

Total observation time
.

[...] This mathematical device of dividing the time scale into

shorter and shorter bands is used frequently in this book, and we

have found it useful to introduce the term clicks to describe these
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very short time bands. Time can be measured in any convenient

units, so that a rate of 1.11 per year is the same as a rate of 11.1

per 10 years, and so on. The total observation time added over

subjects is known in epidemiology as the person-time of observa-

tion and is most commonly expressed as person-years. Because

of the way they are calculated, estimates of rates are often given

the units per person-year or per 1000 person-years.

One way to reconcile the two is to recognize that Prob[transition in next ∆t]

is the expected number of transitions7 as a fraction of the number of can-

didates. Thus, just as with the Wipipedia definition, when we divide this

probability by ∆t to get what Clayton and Hill call the probability of failure

per unit time, it becomes

No. transitions in next ∆t

Ave. no. candidates
÷ ∆t =

Ave. no. transitions in next ∆t

(Ave. no. candidates) × ∆t
,

which has the the same form as Clayton and Hills’ estimator.

Although statisticians and epidemiologists understand that “time can be

measured in any convenient units, so that a rate of 1.11 per year is the same

as a rate of 11.1 per 10 years, and so on,” the next section shows that they

sometimes forget how critical this point is, especially when one wishes to

convert an (incidence-type) rate function into a risk.

7Since not all events in epidemiology involve movement from a more desirable (initial)
state to a less desirable one, we use the more general term ‘transition’ instead of the term
’failure.’
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2 The units in which incidence rate, incidence

density, hazard rate, and force of mortality

are measured

Figure 2 depicts the water demand time curves for (and presumably, the

degree of exclusively-television-viewing by the residents of) the city of Ed-

monton the afternoon (and the afternoon before) the U.S.A. ice-hockey team

played the Canadian team in the gold-medal game at the 2010 Vancouver

Winter Olympic Games. The graph has been viewed by more people than

has Minard’s classic portrayal of the losses suffered by Napoleon’s army in

the Russian campaign of 1812.8.

While the behavior pattern is striking, one omission from the label “Con-

sumer Water Demand, ML” for the vertical axis is notable. This author has

shown this graph to a number of colleagues and outsiders, explaining if nec-

essary that ‘ML’ is a measure of volume (it is short for ‘megalitre’ or millions

of litres) aggregated over all consumers, and then asking if there is anything

remarkable about the vertical axis. People with engineering-type training, or

physicians who measure lung function, have very quickly responded that “it is

missing a time-dimension.” Curiously, epidemiology- and biostatistics-types

whom he has posed this question have been slower to notice this omission.

But even more interesting has been the split as to what they think the units

8http://www.edwardtufte.com/tufte/posters
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The water utility in Edmonton, EPCOR, published the most incredible graph of water

consumption last week. By now you’ve probably heard that up to 80% of Canadians were

watching last Sunday’s gold medal Olympic hockey game. So I guess it stands to reason that

they’d all go pee between periods.

But still—the degree to which the water consumption matches with the key breaks in the

hockey game is stunning.

It’s been 20 years since my days as a beat reporter at CFRN (old screen shot below) and CITV

in Edmonton, so it was nice to get an Edmonton news tip. Thanks to @robertgorell @tcollen

SIGN UP BONUS - At the end of the week we'll
pick one new e-mail subscriber at random to
receive a $50 iTunes Gift Card.

Enter address below to get the morning headlines in
your inbox (more details)

Email Address *

Ludacris a “Multitasker”

Study: Drinking in Moderation Staves

Off Weight Gain in Women

“Human Cheese” - Chef Serves Up

Wife’s Breast Milk

Lawsuit: Lohan Wants $100M For E-

Trade “Milkaholic” Ad

3/8 What If Everybody in Canada

Flushed At Once?

3/5 Can I Please See Your Picture

ID, Mr. Alda?

3/5 Porn Star Scores Front Row

Basketball Tickets From Married

Kansas Coach

3/4 Sully Hangs Up His Wings

3/8 iPhone Battery Trouble Solved:

It Was Software

Figure 2: Minute-by-minute numbers of television-viewers of a major sports
event. Q: What time units are missing from the label for the vertical axis?

of the missing dimension are. A number are quite confident that it must

be ‘ML per-hour’ because “the time scale for the horizontal axis is marked

off in hours”. Others are equally adamant that it must be ‘ML per-minute’

because “the graph fluctuates by the minute.” I leave it to readers to form

their own opinions as to what the missing time unit is. Those who like to

calculate can use the following data: 400ML is approximately 106 million

U.S. gallons; the population of Edmonton is approximately 700,000 people;

“the average Edmonton resident uses 230 litres/person/day for indoor and

outdoor use.”9

To decide which unit most closely matches the reported usage, they will

9http://www.epcor.ca/
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probably compute the total volume over the 6 hours, by taking the (approx-

imate) integral of (area under) the water-demand curve over this time-span.

But in order to do so, each ∆t on the t-axis must be in the same units as

the ML/timeunit on the demand-axis: the volume for each subinterval is

ML
timeunit

× ∆t timeunits. Thus, the total volume of demand for a given 15m

interval is

V ol15min =?
ML

hour
× 0.25 hours =?

ML

min
× 15 min =?

ML

day
× 0.010416̇ days

with ? ML
timeunit

denoting the average demand per time-unit over the interval

in question.

The reaction that the demand must be ML per minute because the time

scale is in minutes is similar to the one which says that if we are to graph

the velocity of a car over a period of minutes, we have to measure the speed

in miles per minute rather than in mph– or that we cannot express heart

rate in beats per minute if we only measure for 15 seconds. We can scale

the velocity to any time unit we wish, but if the integral is to represent the

total distance travelled, we need to calculate the distance travelled in each

different subinterval of time as the (average) distance per time unit over that

subinterval × the time-length of that subinterval – with the time-duration

expressed in the same units as was the velocity.10 This issue of time units

10For a striking example of improper use of units, and by the confusion caused by the
statement that the “venous thromboembolic incidence was 3.6% and 1.5% in the first and
second weeks postpartum, respectively, similar to the 2% to 5% incidence of symptomatic
venous thromboembolism after elective hip replacement in patients not receiving prophy-
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becomes paramount in section 4, when we convert an incidence function into

a risk.

3 Edmonds, the continuous force of mortal-

ity, and the concept of a person-moment

and a person-year

Benjamin Gompertz used the word ‘intensity ’ of mortality in his 1825 arti-

cle.11 We believe that the first person to use the term ‘force’ of mortality in

writing was T.R. Edmonds, a political economist and actuary, and a neigh-

bor and collaborator of William Farr (Eyler 2002; Turner and Hanley, 2010).

Edmonds put the term in italics and in quotes in the first paragraph of his

1832 book. He begins his theoretical treatment with the words (emphasis

ours)

The force of mortality at any age is measured by the number of

laxis” (when “only 105 maternal cases of venous thromboembolism were diagnosed during
pregnancy or postpartum in 50 000 births”), see the correspondence regarding “Incidence
of Pregnancy-Associated Venous Thromboembolism and family history as major risk fac-
tors” begun by MacCallum et al. in the Annals of Internal Medicine, 21 March 2006
Annals of Internal Medicine Volume 144(6). pp 453-460.

For an striking example of how different units can make an incidence function look larger
or smaller, epidemiology students might wish to convert the army losses in Napoleon’s
Russian campaign into incidence densities, as a function of elapsed time (d −1, or
m−1, or y−1 ) or distance (mile−1, or Km−1, or ◦long.−1 ). The data are available at
http://www.math.yorku.ca/SCS/Gallery/re-minard.html.

11Linder (1936) tells us that in 1765, “mathematician Johann Heinrich Lambert, (1728-
1777) was the first to direct attention to what he calls ‘Lebenskraft,’ that is, the force of
vitality or the reciprocal of the force of mortality”.
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deaths in a given time, out of a given number constantly living.

The given time has been here assumed to be one year, and the

given number living to be one person;

Whereas he defined the force of mortality as “the quantity of death in

one year for a unit of life at the assumed age” he conceded that “the force

is changing continually” and so he gives a more hypothetical definition “the

quantity of death on a unit of life which would occur by the action of this force

continued uniform for the space of one year. Edmonds employed infinitesimal

calculus to use the “relation of Dying to Living for large intervals of age to

deduce and interpolate the relation corresponding to small intervals of age”:

“[S]ince this relation for annual intervals is continually varying,

it is manifest, that the same principles which have led to the

conclusion, that the variation is continued and annual, must lead

to the conclusion, that the variation is monthly, and also to the

conclusion, that the variation is diurnal, and even momental.12

It may be assumed, therefore, that all Tables of Mortality rep-

resent the relation of Dying to Living as changing continuously,

- that this relation is never the same for any two successive in-

stants of age. I have used the term ‘force of mortality,’ to denote

this relation at any definite moment of age. It would evidently

12The word ‘person-moment’ is used in Miettinen OS. Etiologic research Needed re-
visions of concepts and principles Scand J Work Environ Health 1999;25 (6, special
issue):484-490.
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be improper to use this term to express the relation of Dying to

Living in yearly intervals of age; for the force of mortality at the

beginning, at the middle, and at the end of any year of age, are

all different.”

Part II will exploit Edmond’s idea of “one person ‘constantly living’ for

one year” (what today would be called a dynamic population with a constant

size of 1) to more simply and heuristically derive the fundamental relationship

between an incidence function and the cumulative incidence proportion (risk)

that seems to have been neglected or made unnecessarily complicated in

modern textbooks.
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